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ABSTRACT: We present a gridded inventory of US
anthropogenic methane emissions with 0.1° × 0.1° spatial
resolution, monthly temporal resolution, and detailed scale-
dependent error characterization. The inventory is designed to
be consistent with the 2016 US Environmental Protection
Agency (EPA) Inventory of US Greenhouse Gas Emissions
and Sinks (GHGI) for 2012. The EPA inventory is available
only as national totals for different source types. We use a wide
range of databases at the state, county, local, and point source
level to disaggregate the inventory and allocate the spatial and
temporal distribution of emissions for individual source types.
Results show large differences with the EDGAR v4.2 global
gridded inventory commonly used as a priori estimate in
inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from
comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are
independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved
emission inventory. Our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane
observations to estimate US methane emissions and interpret the results in terms of the underlying processes.

■ INTRODUCTION

Under the United Nations Framework Convention on Climate
Change (UNFCCC), individual countries must report their
national anthropogenic greenhouse gas emissions calculated
using comparable methods.1 The Intergovernmental Panel on
Climate Change (IPCC)2 provides three different methods or
“tiers” for calculating emissions. All are bottom-up approaches
in which emissions from individual source types are generally
calculated as the product of activity data and emission factors.
Increasing tiers are more detailed and require more country-
specific data. In the United States, the Environmental
Protection Agency (EPA) produces an annual Inventory of
US Greenhouse Gas Emissions and Sinks (GHGI)3 for
reporting to the UNFCCC. The GHGI uses detailed
information on activity data and emission factors, generally
following IPCC Tier 2 and 3 methods. It provides detailed
sectoral breakdown of emissions but only reports national totals
for most source types. Here we present a spatially disaggregated
version of the GHGI at 0.1° × 0.1° spatial resolution and
monthly temporal resolution, including detailed information
and error characterization for individual emission types. Our
goal is to enable the use of the GHGI as an a priori estimate for

inversions of atmospheric methane that may guide improve-
ments in the inventory.
Table 1 gives the GHGI estimates for 2012 with method-

ology updated in 20163 and including contributions from
different source types. Total US anthropogenic emission is 29.0
Tg a−1, including major contributions from natural gas systems
(24%), enteric fermentation (23%), landfills (20%), coal mining
(9%), manure management (9%), and petroleum (or
equivalently oil) systems (8%). The inventory includes forest
fire emissions but no other natural sources. The main natural
source of methane is thought to be wetlands, accounting for 8.5
± 5 Tg A−1 in the contiguous US (CONUS).4 Annual
anthropogenic emissions from 1990 to 2014 computed by
EPA3 with a consistent method (revised each year to include
updated information) show no significant trend and little
interannual variability, with US totals staying in the range 28.6-
31.2 Tg a−1 and contributions from individual source types
varying by only a few percent.
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Application of atmospheric methane observations to estimate
emissions usually involves inversion of an atmospheric
transport model, with consideration of a priori information
from an emission inventory to regularize the results and achieve
a Bayesian optimal estimate of emissions.5,6 The inversion
optimizes emissions on a grid, and the inventory used as a
priori information must be available on that grid. In the absence
of a gridded version of the GHGI, previous inverse studies for
the US have relied on the global EDGAR inventory7 which
provides annual emissions at 0.1° × 0.1° resolution. EDGAR
uses IPCC Tier 1 methods with international data sets, and
only includes a limited breakdown by source type. National
totals in EDGAR are generally consistent with EPA, as shown
in Table 1, but we will see that there are large errors in spatial
allocation that affect inverse analyses and their interpretation.
Our gridded version of the GHGI not only provides a better a
priori estimate but also a better basis for interpreting inversion

results and hence improving our understanding of the
underlying processes.

■ METHODS
We disaggregate the 2012 national emissions reported by the
2016 version of the GHGI3 into a gridded 0.1° × 0.1° monthly
inventory. The gridded inventory is consistent with the EPA
national emission totals for each source type (each entry in
Table 1) and distributes these emissions based on information
at the state, county, subcounty, and point source levels. In this
manner, our inventory is a gridded representation of the
national GHGI. Similar disaggregation has been done for
national methane inventories in Switzerland,8,9 Australia,10 and
the United Kingdom.11 We limit our domain to the CONUS,
which accounts for over 98% of total US emissions on the basis
of our state-level estimates. We use the 2012 emissions from
the 2014 EPA GHGI published in 2016, which includes
detailed descriptions of the methods used to calculate the
national emissions.3 The 2014 GHGI includes updates to the
petroleum and natural gas emissions to reflect new studies.3,12

We focus on the year 2012 as the latest year for which all spatial
activity data are available. Updating our gridded inventory to
newer iterations (the GHGI is updated annually) and later
years will be straightforward as new activity data are released.
We start from the most detailed spatial information directly

available from the GHGI. This information varies by source
type. Livestock emissions are available for each state, whereas
waste and petroleum systems emissions are only available as
national totals. Separate from the national inventory, EPA also
collects methane emission and supporting data from large
facilities under the Greenhouse Gas Reporting Program
(GHGRP).13 Facilities with emissions greater than 25 Gg
CO2 equivalent a

−1 (corresponding to 0.11 tons h−1 for a pure
methane source) and subject to the applicable regulatory
requirements must report to the GHGRP. Some emissions
reported to the GHGRP are directly measured (e.g., under-
ground coal mines), while others are calculated on the basis of
facility-level activity data (e.g., landfills). Where possible, we use
facility-level emissions from the GHGRP but those sometimes
need to be adjusted, as discussed below, to be consistent with
the national inventory.

Agriculture. Emissions from agriculture include enteric
fermentation, manure management, rice cultivation, and field
burning of agricultural residues. EPA provides annual state-level
enteric fermentation and manure management emissions for
different animal types, taking into account varying practices
across the country. We estimate county-level emissions by
using livestock numbers for 14 different animal types (including
different types of cattle) from the 2012 US Department of
Agriculture Census of Agriculture for each animal type.14

County-level emissions are allocated to the 0.1° × 0.1° grid
using 9 different livestock occurrence probability maps (again
distinguishing between different types of cattle) from USDA
based on landtype.15 Emissions from enteric fermentation are
assumed to have no intra-annual variability. Emissions from
manure management vary with temperature as given by16
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where f is a monthly scaling factor, A = 64 kJ mol−1 is the
activation energy, R is the ideal gas constant, Tm is the monthly
average surface skin (radiant) temperature, and To = 303 K.16

Table 1. Inventories of US Anthropogenic Methane
Emissions (Gg a−1)a

source type EPA GHGI (2012)
EDGAR v4.2

(2008)

agriculture
enteric fermentation 6670 (5936−7871) 6720
manure management 2548 (2089−3058) 2200
rice cultivation 476 (395−557) 418
field burning of
agricultural residues

11 (7−15) 38

natural gas systems 6906 (5594−8978) 4758
production 4442
processing 890
transmission and storage 1116
distribution 457

waste
landfills 5691 (3528−9333) 5230

municipal 5098
industrial 593

wastewater treatment 601 (367−613) 887
domestic 368
industrial 232

composting 77 (39−116) 83
coal mines

coal mining 2658 (2339−3057) 4140
underground 2159
surface 499

abandoned coal mines 249 (204−309)
petroleum systems 2335 (1775−5814) 1032
other

forest fires 443 (62−1214) 17
stationary combustion 265 (156−676) 424
mobile combustion 86 (76−101) 104
petrochemical
production

3 (1−4) 24

ferroalloy production 1 (1−1) 1
total 29020 (26698−36565) 26075
aColumn two shows the EPA inventory of US Greenhouse Gas
Emissions and Sinks (GHGI) for 2012 as updated in 2016.3 95%
confidence intervals are in parentheses as provided by EPA, sometimes
only for broad source categories. Column three shows the US
component of the global EDGAR v4.2 inventory for 2008.7 The
gridded version of the EPA GHGI developed in this work includes
separate files for all entries in this table.
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Monthly emissions are calculated by scaling annual emissions
with normalized monthly f-fields using 0.625° × 0.5° monthly
average surface skin temperature fields from the NASA
MERRA-2 meteorological data.17 Livestock emissions also
vary subanually as a function of varying herd size, and
management practices but those effects are not included in
our inventory.
Annual state-level emissions from rice cultivation are

obtained from EPA and allocated to counties using acreage
harvested from the USDA Census.14 Emissions for each county
are allocated to the 0.1° × 0.1° grid based on crop maps with
30 m resolution from the USDA Cropland Data Layer
product.18 Annual emissions are then distributed over
individual months using normalized mean 2001−2010
heterotrophic respiration rates from the 1° × 1° monthly
Carbon Data-Model Framework (CARDAMOM) terrestrial C
cycle analysis.19

Emissions from field burning of agricultural residues of five
individual crops (corn, rice, soybeans, sugar cane, and wheat)
are allocated to a 2003−2007 monthly climatology of
agricultural fires.20

Natural Gas Systems. This source type includes emissions
from natural gas production, processing, transmission, and
distribution. It does not include emissions from abandoned
wells.21 Emissions from natural gas production are available
from EPA for each of the six National Energy Modeling System
(NEMS) regions defined by the US Energy Information
Administration (EIA).22 The GHGI attributes emissions to
different activities (e.g., vessel blowdowns, well workovers,
liquid unloading) and equipment (e.g., pneumatic devices).
Detailed maps of these activities and equipment are not
available. Therefore, we rely on monthly well data obtained
from DrillingInfo.23 Separate DrillingInfo data are available for
the number of gas producing wells, nonassociated gas wells
(gas-to-oil ratio over 100 mcf gas per barrel), coalbed methane
wells, and coalbed methane well water production. We also
distinguish conventional and unconventional wells as some
emissions are specific to hydraulic fracturing. A well is flagged
as unconventional if the drilling direction is horizontal as given
by DrillingInfo or if the reservoir type is coalbed, low
permeability, or shale.3 For each NEMS region, we allocate
emissions using the DrillingInfo-based maps best representative
of the spatial distribution of the considered activity or
equipment. State-level condensate production from EIA24 is
combined with nonassociated gas well maps to allocate
emissions from condensate tank vents. Three gas-producing
states (Illinois, Indiana, and Tennessee) do not have active
wells in the DrillingInfo database and amount to less than 1%
of national active gas wells.25 For these states we use state-level
data on the number of natural gas wells25 to calculate state
emissions and then use county-level gas production26 and
finally three different well databases to grid emissions.27−29 For
offshore emissions, the 2011 Gulfwide Offshore Activity Data
System (GOADS) platform-level emission database is used for
the Gulf of Mexico3,30 and DrillingInfo is used outside of the
Gulf of Mexico, scaling total emissions to the national emission
from the GHGI. As no national spatial data are available for
gathering processes (only a subset report to the GHGRP31),
emissions from these processes are included in the production
sector and gridded in the same way.
Emissions from gas processing are only available as national

totals in the GHGI. We allocate emissions to processing plants
by combining the GHGRP data13 with the EIA database for

these plants.32 The GHGRP covers 85% of the processed gas
flow from the EIA database. For the remaining plants in the
EIA database, emissions are estimated by multiplying their gas
flow with the average ratio of methane emissions to gas flow of
the GHGRP plants. Subsequently, emissions from all plants are
scaled to match the national GHGI number; the scaling is
required because the GHGRP does not include all emitting
processes occurring at the plants and has different emission
estimates per process.31 Thus, we only use the GHGRP to
allocate emissions in a relative sense with emission magnitudes
constrained by the GHGI. The EIA database only provides
postal codes for the processing plants and not coordinates; we
determine non-GHGRP plant coordinates from the Rextag
Strategies US Natural Gas Pipeline and Infrastructure Wall
Map.33 If there is no match with the GHGRP or Rextag data,
emissions from the plant in the EIA database are spread out
over the associated postal code area.34

EPA provides national emissions for different parts of the
transmission sector. Most important are transmission com-
pressor stations, for which we use a similar mapping as for
processing plants. The GHGRP data for individual compressor
stations are complemented with the EIA database for
nonreporting compressor stations.35 Emissions for nonreport-
ing compressor stations are estimated based on their
throughput,35 using the average ratio of throughput to methane
emission from the GHGRP data. Emissions are then scaled to
the national total so our results are not affected by potential
underestimates in the GHGRP emissions.36 Similarly, a
database of storage stations37 is combined with the GHGRP
using total field capacity to predict emissions. Locations are
based on the GHGRP, supplemented by gas storage field
locations georeferenced from the Rextag Strategies US Natural
Gas Pipeline and Infrastructure Wall Map,33 and DrillingInfo.23

Similar approaches are also used for liquid natural gas (LNG)
storage38 and LNG import terminals.39 Emissions from pipeline
leaks and transmission meter and regulator stations are
allocated to the network of interstate and intrastate pipelines.40

Emissions from farm taps are allocated to pipelines intersecting
with agricultural land.18 Emissions related to storage at wells are
mapped to all nonassociated gas wells.23

Emissions from different parts of the distribution network are
available from EPA as national estimates. State-level emissions
from distribution pipeline leaks are calculated using state data
on pipeline miles and services from the Pipeline and Hazardous
Materials Safety Administration (PHMSA) of which the sum is
used for the national GHGI.41 This takes into account different
materials (e.g., cast iron, plastic) with different emission factors.
Emissions from distribution meter and regulator stations are
divided among states using state-level aggregated GHGRP
information (no finer spatial information is available). Other
distribution emissions are partitioned between the states based
on leaked gas volume data from EIA.42 Within states, emissions
are mapped to 0.1° × 0.1° population data from the 2010 US
Census.43

Waste. Waste emissions include landfills, wastewater
treatment, and composting, for which EPA provides national
totals following the categories in Table 1. We allocate emissions
from landfills based on a combination of data from the GHGRP
(1231 municipal landfills, 175 industrial landfills), the Landfill
Methane Outreach Program (LMOP, municipal landfills
only),44 and the Facility Registration Service (FRS).45

GHGRP landfills are assigned their reported emissions. 900
of 2049 LMOP landfills do not report emissions to the
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GHGRP. For those we estimate emissions from GHGRP-
reporting landfills with similar attributes (presence of a
collection system, flares). Some landfills report landfill gas
production through the LMOP. For the other landfills, waste in
place is used as estimation metric combined with a decay factor
for landfills that closed before 2012.46 For landfills without any
data (108), we assign the median emissions from the landfills
for which information was available. Finally, we use landfills
with known coordinates from the FRS that are not present in
the GHGRP or LMOP data sets. We decide whether a landfill
is municipal or industrial based on keyword descriptors in the
databases. The 722 municipal FRS landfills are assigned the
median emission derived from above, after which all non-
GHGRP emissions are scaled to match the national emission
estimate. For industrial landfills, the national estimate minus
the GHGRP emissions is uniformly allocated across the 2309
industrial landfills from the FRS.
Emissions from wastewater treatment are reported as

municipal or industrial in the GHGI. Facilities that report to
the GHGRP account for 84% of the national industrial
wastewater treatment emissions. To allocate the remaining
industrial emissions as well as the municipal emissions, we use
facility-level wastewater flow data from the Clean Watersheds
Needs Survey.47 Industrial wastewater treatment emissions are
mapped to treated industrial flow, emissions from municipal
septic systems to decentralized municipal flow, and centralized
municipal systems emissions to centralized municipal flow.
State-level emissions from composting are calculated using

the tonnage of municipal solid waste composted or, if
composting data are not available, from the correlated tonnage
recycled.48 Within states, emissions are allocated to locations
from the US Composting Council,49 BioCycle composter
database,50 and composting entries in the FRS.45 If there are
fewer than three facilities found in a state, we allocate based on
gridded population instead.43

Coal Mines. We allocate coal mining emissions using state-
level emission estimates produced for the GHGI (M. Cote,́
Ruby Canyon Engineering, unpublished data) for underground
mines and surface mines. These estimates account for methane
recovered or destroyed, as well as postmining emissions
(methane released during coal handling and processing). We
use the locations and production of all active surface and
underground coal mines from EIA.51 A large number of
underground mines report their annual methane emissions to
GHGRP. We estimate emissions from nonreporting under-
ground mines based on their share of the state total coal
production combined with the state-level emissions, weighted
by the basin-level in situ methane content of the coal for states
that have mines in multiple basins.3 Subsequently, we scale the
emissions from nonreporting mines so that the total national
emissions (including the GHGRP mines) match the GHGI.
For surface mines, no GHGRP data are available. Emissions are
allocated using the EPA state-level data as given above,
combined with EPA basin-level emission factors and EIA
mine-level production data. Similarly, postmining emissions are
allocated to all mines based on their production and basin-
specific emission factors.
The GHGI also includes emissions from abandoned coal

mines. We start from the Abandoned Coal Mine Methane
Opportunities Database (ACMMOD)52 and add recently
closed coal mines plus county-level estimates of mine closures
before 1972 not included in ACMMOD (unpublished data
produced for EPA by Ruby Canyon Engineering). For all

closed mines, estimates of closure dates, status (venting, sealed,
flooded), and estimates of emissions when the mine was active
are available or estimated from county-level averages, allowing
the estimation of present-day emissions based on decline
equations used in the GHGI.53 ACMMOD only includes mine
locations on the county level. Precise locations of approx-
imately one-third of the abandoned mines are found in the Full
Mine Info data set.54 The remaining emissions are allocated on
the county level.

Petroleum Systems. The GHGI includes national
emissions from different activities and equipment related to
petroleum production, refining, and transport. We use monthly
well data for several production quantities from DrillingInfo23

to spatially allocate these emissions. These include total, heavy,
and light oil production, with the cutoff between the last two at
an American Petroleum Institute (API) gravity of 20. EPA
estimates some emissions separately for heavy and light oil
production. Furthermore, we created maps of oil wells (defined
as wells with a produced gas-to-oil ratio under 100 mcf per
barrel, wells with a higher ratio are classified as nonassociated
gas wells), stripper wells (producing fewer than 10 barrels per
day), and total and unconventional oil well completions. Similar
to the allocation of natural gas production emissions, states
without active wells in DrillingInfo are represented using state-
specific data sets and amount to less than 1% of national
production.55 For the other states, the national-level emissions
from each activity and device are allocated using the
DrillingInfo maps. For example, emissions from well drilling
are mapped to well completions, while emissions from heavy
crude oil wellheads are mapped to heavy oil wells. As for natural
gas systems, offshore emissions are based on the GOADS
database for the Gulf of Mexico and DrillingInfo elsewhere.
Emissions from petroleum refining are allocated to GHGRP
facilities based on their reported emissions. National emissions
from petroleum transportation are divided between the wells,
offshore platforms, and refineries.

Other. Other refers to a number of smaller sources listed in
Table 1. National forest fire emissions from the GHGI are
distributed on a daily basis at 0.1° × 0.1° resolution using the
Quick Fire Emissions Data set (QFED v2.4) for 2012.56

Stationary combustion emissions from electricity generation are
calculated by multiplying plant-level heat inputs from the Acid
Rain Program with fuel type specific emission factors.57

Additional stationary combustion emissions from the industrial,
commercial, and residential sectors are based on state-level
consumption of different types of fuel (coal, fuel oil, natural gas,
and wood) as reported by EIA.58 Within states, residential and
commercial emissions are allocated based on population while
industrial emissions are allocated based on combustion
emissions reported to the GHGRP. National on-road mobile
combustion emissions for individual vehicle types in the GHGI
are allocated spatially by first calculating state-level vehicle miles
traveled (VMT) for six types of roads: urban and rural for each
of primary, secondary, and other (minor) roads59 and
attributing those to individual vehicle types.59 These state
totals are then mapped to the different road networks taken
from the National Transportation Atlas60 and US Census
products.61 Combustion emissions from rail transport are
allocated over the US railroad network.61 Emissions from
agricultural equipment are uniformly spread out across all
agricultural land.18 Emissions from mining-related vehicles are
allocated to active mines.54 Construction and “other” mobile
combustion emissions are mapped based on population.
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National emissions from ferroalloy production and from the
petrochemical industry are divided over the facilities reporting
to the GHGRP based on their total reported emissions.

■ RESULTS AND DISCUSSION
Figure 1 shows the distribution of annual emissions on the 0.1°
× 0.1° grid for the six general emission categories of the

Methods section. Emissions from agriculture are broadly
distributed across livestock farming areas. Hotspots are mostly
from concentrated dairy cattle or hog populations such as in
Iowa, North Carolina, and California. Rice cultivation
contributes hotspots in northern California and along the
lower Mississippi River. Emissions from natural gas systems are
high in production fields, for example in Pennsylvania
(Marcellus shale) and in Texas, with a maximum at Four
Corners as found in top-down studies.62 Waste emissions
(dominated by landfills; Table 1) roughly map to population,
with hotspots from large landfills and wastewater facilities. Coal
mining emissions are concentrated in Appalachia. Petroleum
systems emissions peak over the Bakken region in North
Dakota and western Texas where natural gas emissions are low.
Other emissions mostly feature forest fire hotspots in the West
and stationary combustion emissions in populated areas.
Total CONUS emissions for 2012 are 28.7 Tg a−1, slightly

lower than the 29.0 Tg a−1 national total reported in Table 1
because of contributions from Alaska, Hawaii, and outside
territories. Several sources vary monthly in our inventory
including manure management, natural gas and petroleum
production, stationary combustion, and forest fires (daily).
Monthly emissions vary from 73 Gg per day in December to 89
Gg per day in July. Most of this monthly variation arises from
manure management, which varies nationally from 2.4 Gg per
day in January to 16.8 Gg per day in July. Eq 1 is for liquid

storage systems but is applied here to all manure management
systems, which may overestimate the seasonal variation.63,64

For rice emissions, we assume a constant methane to CO2
emission ratio from heterotrophic respiration, which may
underestimate the seasonal variation as the ratio has been found
to increase with temperature in wetlands and aquatic
ecosystems.65 On the other hand, some seasonal factors are
not considered in our inventory due to lack of data such as
livestock numbers, feed, and gas/petroleum distribution.
Transient elevated emissions from oil/gas systems (the so-
called “super-emitters”66) are also not resolved.
Figure 2 compares the distribution of total methane

emissions in our gridded EPA inventory for 2012 to the
EDGAR v4.2 inventory for 2008, the latest year of full release.7

A fast track version of EDGAR (v4.2 FT20107) has come out
since but, based on visual inspection, the spatial emissions
patterns in EDGAR v4.2 are of higher quality and most inverse
studies have used EDGAR v4.2. There are large differences in
spatial patterns between the Gridded EPA inventory and
EDGAR v4.2, particularly for oil/gas systems and manure
management. Emissions in the gridded EPA inventory are
much higher over oil/gas production areas and lower over
distribution (populated) areas. The two inventories show no
significant correlation at their native 0.1° × 0.1° resolution (r =
0.06). The correlation increases to r = 0.42 at 0.5° × 0.5°
resolution and r = 0.63 at 1.0° × 1.0° resolution.
Previous inverse studies for US methane emissions using

EDGAR as a priori estimate have all found the need for a large
upward correction of emissions in the South-Central US.67−70

Figure 3 shows the distributions of livestock, oil/gas systems,
and waste emissions for that region in the gridded EPA and
EDGAR v4.2 inventories. The EDGAR v4.2 inventory places
the oil/gas emissions in urban areas and completely misses
areas of production. The oil/gas emissions in EDGAR v4.2 are
strongly correlated with waste emissions because both are
largely distributed following population. An inversion using
EDGAR v4.2 as a priori estimate would not be able to separate
the two and might wrongly attribute a source in oil/gas
production regions to livestock. This stresses the importance of
using a high-quality a priori inventory in inverse analyses, both
to regularize the solution and to enable interpretation of results.
Whereas different source types show spatial correlation in the
EDGAR v4.2 inventory because of mapping to common
databases, there is no such correlation between source types in
our gridded EPA inventory even at 1° × 1° resolution. This
separation between individual source types holds promise for
interpreting results from inverse analyses.
Error characterization is necessary for a gridded emission

inventory to serve as a priori estimate in Bayesian inversions
and to interpret results from the inversions. Error character-
ization is not available for the EDGAR v4.2 inventory and
inversions have typically assumed 30−100% uniform error
based on expert judgment, or used the inversion to estimate the
error in the a priori.71 The GHGI includes detailed error
characterization on its national totals for individual source
types, based on propagation of uncertainties in the construction
of the bottom-up estimates (Table 1). Errors in our 0.1° × 0.1°
gridded inventory may be larger because of local uncertainties
in activity data and emission factors, including the precise
localization of emissions. For the same reason, averaging our
inventory over coarser grids (by adding contributions from 0.1°
× 0.1° grid cells) could reduce the error. This scale dependence
is important to describe because inversions may seek to

Figure 1. Contiguous US (CONUS) methane emissions from
different source categories. Total annual US emissions from the
2016 EPA GHGI for 2012 are disaggregated here on a 0.1° × 0.1° grid.
“Other” refers to the ensemble of minor sources in Table 1. (An
equivalent figure for EDGAR v4.2 is shown by in Turner et al.70).
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optimize emissions at different spatial resolutions depending on
the information content of the atmospheric observations.
Here we derive scale-dependent error statistics for our

gridded EPA inventory by comparison to a detailed bottom-up
emission inventory compiled by Environmental Defense Fund
(EDF) for the ∼300 × 300 km2 Barnett Shale region in
Northeast Texas by Lyon et al.72 and subsequently updated
with top-down constraints by Zavala-Araiza et al.73 The EDF
inventory was constructed largely independently from the
GHGI. It is based on an extensive field campaign in the region

in September−October 2013 including measurements of
individual facilities as well as regional surveys.12 The Barnett
Shale region is of particular interest as a comparison standard
because it includes diverse sources: the largest oil/gas field in
the CONUS (30 000 active wells), major livestock operations,
and the metropolitan area of Dallas/Fort Worth. The EDF
inventory incorporates considerable local information that goes
beyond the databases used in constructing our inventory, and
including for example precise locations of dairy farms, gas
gathering stations, and landfills.72 Emissions are reported on a 4
× 4 km2 grid (approximately 0.04° × 0.04°) with detailed
breakdown by source types and statistical sampling of “super-
emitter” facilities with anomalously large emissions.
Figure 4 shows emissions from livestock, natural gas, waste,

and petroleum in the Zavala-Araiza EDF Barnett Shale
inventory and compares to our gridded EPA inventory.
Emission totals for the domain are shown in Table 2. There
is a large difference in the magnitude of the source from oil/gas
production, at least in part because Zavala-Araiza et al. find a
larger frequency of superemitters than assumed in the GHGI
emission factors. Despite this difference in magnitude there is a
strong spatial correlation on the 0.1° × 0.1° grid (r = 0.78),
implying that correction to the gridded EPA distribution in an
inversion of atmospheric data could be reliably attributed to the
oil/gas production source type, smoothing temporally over
superemitters. The spatial correlation coefficient of the
livestock source between the gridded EPA and EDF inventories
is only 0.37 at 0.1° × 0.1° resolution but increases to 0.88 at
0.5° × 0.5° resolution. The gridded EPA inventory misses the
exact locations of farms but this error is smoothed out on the
county scale.
We take the Zavala-Araiza EDF Barnett Shale inventory as

our best approximation of emissions in the region in order to
derive scale-dependent error statistics for different source types
that can be used in an inversion of atmospheric concentration
data. We assume for this purpose that the total error probability
density function (pdf) for each source type in a given grid cell is
Gaussian and includes a displacement error due to imprecise
localization. Our error model is given by

∑σ α
β

= ′ −∥ − ′∥

′

⎛
⎝⎜

⎞
⎠⎟Ex x

x x
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x

2
2

2

2
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Here, σ(x) is the Gaussian error standard deviation for the grid
cell centered at location x and for a given source type, α is a
base relative error standard deviation assuming no displacement
error, E(x′) is the 2-D field of emissions for that source type
over all grid cells, and β is a length scale for the displacement
error. α and β are assumed to be uniform for a given source
type. We find optimal values for α and β by minimizing a least-
squares cost function J(α, β) for the difference between our
estimated error standard deviation and the absolute difference
between the gridded EPA and EDF emissions:

∑α β σ α β= − | − |J E Ex x x( , ) ( ( , , ) ( ) ( ) )
x

EDF
2

(3)

where the summation is over all grid cells of the Barnett Shale
domain in Figure 4. Optimization of α and β is done for the
different source types of Figure 4 (also separating waste as
landfills and wastewater) and for grid resolutions L from 0.1° to
0.5° to determine the scale dependence of the error. 0.5° is the
coarsest scale that can be usefully constrained from the Barnett
Shale inventory, but from there we can extrapolate to the

Figure 2. Total methane emissions in the gridded EPA inventory for
2012 (top), EDGAR v4.2 for 2008 (middle), and difference between
the two (bottom).
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national scale using the GHGI error estimates. For this purpose
we take the average of the upper and lower confidence intervals
for the given source type in Table 1 as representing the relative
error standard deviation αN on the national scale. We then fit
our results for α(L) and β(L) to exponential forms of L, with
asymptote αN for α. This yields

α α α= − − +αk L Lexp( ( )) N0 0 (4)

β β= − −βk L Lexp( ( ))0 0 (5)

Here L0 = 0.1° is the native resolution of our inventory, and kα
and kβ (in units of inverse degrees) are smoothing coefficients
that express the scale dependence of the error. The fit is subject
to the condition α0 ≥ 0; if the base error standard deviation
derived from the Barnett Shale inventory is smaller than αN
then we assume that α is scale-independent and equal to αN.
Figure 5 shows the base relative error standard deviation α

and displacement length scale β as a function of grid resolution
L for the different source types active in the Barnett Shale.
Values for all coefficients in eqs 4 and 5 are given in Table 3.
Base error standard deviations (α) for different source types at

Figure 3. Emissions from livestock, oil/gas systems, and waste over the South-Central US in the gridded EPA inventory for 2012 and the EDGAR
v4.2 inventory for 2008.

Figure 4. Methane emissions in the Barnett Shale region of Northeast Texas. Values for the four main categories are shown for our gridded EPA
inventory and for the EDF inventory73 at 0.1° × 0.1° resolution. The original EDF inventory is at 4 × 4 km2 and is regridded here to 0.1° × 0.1° for
comparison with our inventory. The location of the Barnett Shale region is shown inset. Emission totals for the region are given in Table 2.
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0.1° × 0.1° grid resolution are all above 50%. Errors for
livestock, natural gas systems, and wastewater are scale-
dependent and decrease when coarser grid resolutions are
used. Errors for petroleum systems and landfills are defined by
the national estimates, which are relatively large, and are thus
scale-independent. The displacement error measured by β is
usually very small, less than 0.1°, in part because it is isotropic
(there is no a priori information on the direction of

displacement error). Because of its Gaussian form, it
emphasizes the effect of neighboring misplacements; it would
not capture the error from a distant misplacement or from a
completely missing source.
We recommend that users of our emission inventory at a

given grid resolution L apply the error parameters in Table 3
nationally to derive α(L) and β(L) from eqs 4 and 5, and from
there use eq 2 to derive the absolute error standard deviation σ
for individual source types and grid cells. For source types not
constrained by the Barnett Shale inventory, we assume here
that the base error standard deviation at 0.1° × 0.1° resolution
is 2.5 times the national value from Table 1, based on the
median scale dependence for the sources in the Barnett Shale.
We use median values of the other error parameters in Table 3
and cap α at 1.0. Error variances for the different source types
present in a grid cell can be added in quadrature to derive the
error variance for the total emission in that grid cell. A simple
variogram analysis76 of the difference between the EDF and
EPA inventories shows no spatial error correlation, either for
total emissions or for individual source types, suggesting that
the a priori error covariance matrix needed for a Bayesian
inversion can be assumed diagonal. A previous study comparing
a disaggregated national inventory for Switzerland to EDGAR
v4.2 did find significant spatial error correlations.8

Table 2. Regional Methane Emissions (Gg a−1)a

Barnett Shale region California

source EDF (Lyon) EDF (Zavala-Araiza) this work r CALGEM this work r

oil/gas production 330 436 327 0.78 171 264 0.90
gas processing 49 65 62 0.24 12 7 0.25
gas transmission 16 2 8 0.20 22 24 0.69
gas distribution 10 9 16 0.87 131 39 0.98
livestock 104 102 122 0.37 721 885 0.46
landfills 105 99 92 0.76 316 507 0.86
wastewater 7 7 12 0.21 91 45 0.53
sum 621 720 640 0.68 1463 1772 0.66

aAnthropogenic emissions from the Barnett Shale region in Northeast Texas (Figure 4) and from the state of California (Figure 6). Regional totals
by source type from our gridded version of the gridded EPA inventory for 2012 (this work) are compared to the original bottom-up (Lyon) EDF
inventory for the Barnett Shale in October 2013,72 the updated (Zavala-Araiza) EDF inventory including top-down information,73 and the CALGEM
inventory for California in 2008 (livestock/waste)63,74 and 2010 (oil/gas).75 Also shown are spatial correlation coefficients r on the 0.1° × 0.1° grid
for the Barnett Shale73 and 0.2° × 0.2° for California.

Figure 5. Relative error standard deviations for methane emissions from individual source types and their scale dependences. The figure shows the
error parameters α and β used in eq 2 to calculate the absolute error standard deviations for a given L × L grid cell and source type as a function of
the grid resolution L. The native grid resolution of the inventory is 0.1° × 0.1°, and averaging over coarser scales decreases errors for individual
source types as described by exponential decay functions (eqs 4 and 5). The asymptotes for the base error standard deviations are the national values
αN shown as tick marks on the right side of the left panel. Values for all error parameters are given in Table 3.

Table 3. Error Parameters for the Gridded EPA Emission
Inventory

source α0 kα αN β0 kβ

livestock 0.89 3.1 0.12 0
natural gas systems 0.28 4.2 0.25 0.09 3.9
landfills 0 0.51 0.08 2.0
wastewater treatment 0.78 1.4 0.21 0.06 6.9
petroleum systems 0 0.87 0.04 197

aError parameters for use in eqs 4 and 5 to compute the base relative
error standard deviation α(L) and displacement error length scale
β(L) for different source types at different grid resolutions L × L. The
resulting values of α(L) and β(L) should be used in eq 2 to estimate
the error standard deviation for a given source type and grid cell. Units
are degrees for L and β0, and inverse degrees for kα and kβ. α0 and αN
are dimensionless. The livestock error estimate is to be applied to the
sum of enteric fermentation and manure management emissions.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b02878
Environ. Sci. Technol. 2016, 50, 13123−13133

13130

http://dx.doi.org/10.1021/acs.est.6b02878


Our error model is a first attempt to quantify grid-dependent
errors for use in inversions of atmospheric concentration data,
and in that it significantly improves on previous bottom-up
inventories. It has however a number of weaknesses. First, the
Barnett Shale region may not be representative nationally and
offers no error characterization for some sources (in particular
coal mining). Second, inverse analyses of atmospheric
observations67,70,77 suggest that EPA underestimates on the
national scale maybe be larger than estimated from αN,
although these inverse analyses have their own errors. Third,
the assumed Gaussian form for the error pdf is convenient for
analytical inversions6 but is not optimal. It does not exclude
unphysical negative solutions and it does not capture the “fat
tail” of the pdf contributed by superemitters.66,72 A log-normal
error pdf would solve the positivity problem and allow a better
description of the fat tail. Fourth, some spatial error correlation
would be expected even though it cannot be detected in our
simple variogram analysis for the Barnett Shale; more advanced
variogram analyses and better data sets might enable
detection.8,76 Fifth, we do not consider temporal error
correlations because inversions typically focus on optimizing
the spatial distribution while assuming the temporal variation to
be known (and relatively weak in our case). This may not be
appropriate for some applications, in particular when
optimizing emissions from seasonally varying sources.19

The state of California has developed its own methane
emission inventory in support of its policy objective to reduce
greenhouse gas emissions to 1990 levels by 2020.78 Similarly to
our work here, this California inventory has been disaggregated
by Zhao et al.,74 Jeong et al.,63 and Jeong et al.75 to produce the
gridded 0.1° × 0.1 ° California Greenhouse Gas Emissions
Measurement (CALGEM) inventory (calgem.lbl.gov/
emissions). The CALGEM grid is offset by 0.05° from ours,
so we can only compare them at 0.2° × 0.2° and even then with
some unresolvable remapping error. Table 2 compares total
California emissions for individual source types, including
spatial correlation coefficients. Total state emissions are close
(1772 Gg a−1 in our work and 1463 Gg a−1 in CALGEM).
There is more difference in individual source types but most
source types show strong correlations between the two
inventories, suggesting that they could be effectively con-
strained in an inverse analysis of atmospheric observations.
Figure 6 compares the spatial distributions of emissions in the
two inventories, including our (Barnett-based) estimated error
standard deviation on the 0.2° × 0.2° grid, and adding error
from different source types in quadrature for a given grid cell.
We find that 51% of CALGEM emissions are from cells that
have emission magnitudes within one standard deviation of our
gridded EPA emissions. The largest differences are from
livestock emissions, as CALGEM uses more local data to
distribute these emissions within the large California counties.
In summary, we have constructed a gridded version of the

EPA GHGI published in 2016 for US anthropogenic methane
emissions with monthly 0.1° × 0.1° resolution including
detailed information on different source types. Our inventory
includes error characterization for different source types and
spatial scales, as required for application as a priori estimate in
inverse analyses. Our inventory is for 2012 emissions but can
easily be updated to later years as activity data become available.
Monthly gridded emission fields for all emission subcategories
in Table 1 are publicly available at www.epa.gov/ghgemissions/
gridded-2012-methane-emissions.
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Figure 6. Methane emissions in California in 2012 from all sources in
Table 2. The top panels show results from our gridded EPA inventory
and from the CALGEM inventory on their native 0.1° × 0.1° grids.
The bottom left panel shows the difference and the bottom right panel
shows the error standard deviation in our gridded EPA inventory as
computed with the method described in the text. The sign of the error
standard deviation in the figure is the same as the EPA-CALGEM
difference to facilitate visual comparison. Differences and error
standard deviations are shown on a 0.2° × 0.2° grid to account for
the 0.05° offset between the EPA and CALGEM grids.
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